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ABSTRACT
We show that if [,(X), p # 2, is finitely crudely representable in an Orlicz
space L, (which does not contain ¢,) then the Banach space X is isomorphic to
a subspace of L,. The same remains true for p = 2 when L, is 2-concave or
2-convex, or if X has local unconditional structure. We extend a theorem of
Guerre and Levy to Orlicz function spaces.

Introduction

Let X be a Banach space and 1 = p < 2. It was proved by N. Kalton ([K])
that if /,(X) isomorphically embeds into L, then X embeds into L,. The same
remains true for p = 2 as was shown by B. Maurey ([M]). Here we want to give
an analogous statement for an Orlicz space L, instead of L,. We consider only
normed Orlicz spaces (i.e. associated to a convex Orlicz function) although the
results easily extend to the quasinormed case.

In the frame of Orlicz spaces, it is more natural to take as hypothesis that
1,(X) is finitely crudely representable in L, (cf. [JMST], p. 170 for a definition),
which is equivalent to say that it is C-isomorphically embeddable in some
ultrapower of L, (for some C < ).

Now we suppose 1 = p < oo, p # 2 and obtain that X embeds in L,. For
p = 2, we have to suppose moreover the Orlicz space L, to be 2-concave (hence
embeddable in L,) or 2-convex. This restriction can be avoided when X has
local unconditional structure. As an application we give an extension to Orlicz
spaces of a result of S. Guerre and M. Lévy (see [GL]), concerning /, spaces in
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subspaces of L;: an infinite dimensional subspace E of L, contains /,., (resp.
L&) when p(E) (resp. g(E)), the g.l.b. (resp. L.u.b.) of type (resp. cotype)
exponents of E, is different from 2. See also [R] for a less-refined version of this
last result.

For p > 2 these results were announced in [R2]. A preliminary and shor-
tened version of this work was given also in [R3].

Let us now recall some definitions concerning Musielak-Orlicz spaces
(cf. [Mu]). Let (Q, o/, ) be a measure space. A Musielak-Orlicz function is a
measurable function y:Q X R, — R, with partial functions ¥, = ¥(w, .)
being Orlicz. For f€ Ly(QQ) define the “modular™:

YN = [ v, 1))

Then || f||, =inf{a:¥(f/a)=1} and the Musielak-Orlicz space is L, =
{fE€Ly/ | f|}, <o} Now if y is uniformly moderate, i.e.

Ess sup sup v, 20 <
) ¢ w(w,t)
then || |, is defined by Y(f/ || f[,) = 1.

If ¢ is a moderate Orlicz function (sup,(9(2¢)/9(t)) < o0) then ultrapowers of
L,(Q, o, 1) are Musielak-Orlicz spaces L,,,(Q, &, j1) (associated to an uni-
formly moderate M.-O. function and a “bigger” measure space): see e.g. [W] or
[HLR]. So the finite representability of /,(X) in L, is equivalent to its embedd-
ability in L,(Q, <, ). If X is assumed to be separable, then (€, <, j1) may be
supposed o-finite, in fact (using a change of density) a probability space.

b

I. [, sequences in a Musielak—Orlicz space L, (Q, &/, P)

As we will be concerned with the asymptotic properties of such sequences,
we will make use of the extension S, of the space of random measures
introduced (for Orlicz spaces) by Garling ([Ga]). Let N, be the set of random
probability measures x on (€2, «/, P) such that:

V) =E [ (o, 1t)du) < o.

Let O be the set of K-moderate Orlicz functions f (Sup,..o( f(2¢)/f(¢)) = K). N,
is equipped with the w.m. topology (see [Ga], [A]) and O with the topology of
uniform convergence on compact sets. Then S, = N, X O is equipped with
the (metrizable) topology such that:
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o’n=(un’fr‘1)ma=(ﬂ’f) lﬁﬂ”—ﬂ*ﬂ and
fi AW~ [+,  (where ¥,(i)=E f w(, 211))dua ().

Recall that S, is locally compact (i.e. the sets {o=(u,f)ES,,
W(u)+ f(1) = C} are compact) and there is a natural homeomorphic embed-
dingiof L, in S, : i(x) = (dy, 0), where (J,), = Iy 1S the evaluation measure
at the point x(w). In particular if i(x,) 0= (u, f) then for each x €L,

YO+ x) 2 B [ W@, 1x()+ 1 Ddis() + )

which allows one to calculate t(x) =lim,__ || x + x, || , the “type” defined by
(x,), (in the sense of [KM]): see [Ga], th. 36.

On S, are defined the operations of scaling and convolution:

e IfacRand o = (u, /)ES, thena.ag = (s,u, s, f) where s, u is the image
of the random measure u by the scaling ¢t — at; and s, f(¢) = f(|a |1).

eIfo=(u,f)andt=(v,g)thenoxt=(ux*v, f+g).

If 6 €S, let K, (o) be the closure of {¢} under the scaling and convolution
operations in S,. Let K, (o) be its (topological) closure in S,.

By a p-stable element of S, we mean a couple (u, ) where f(t) =a’t”
(a€R,) and u is a random p-stable symmetric probability distribution
(f,(t) = e~ 4"@""y when p = 2; u is the constant §, when p > 2.

A p-stable element is said to be non-trivial if it is distinct from the “zero-
element”

0 = (dg, 0).

The following proposition is merely an adaptation to the Orlicz setting of the
result of Aldous ([A], th. 3.10) or Krivine-Maurey ([KM], th. IV.2).

ProrosiTION 1. Ifo€S,\i(L,) then K, (a) contains a nontrivial p-stable
element ( for a certain p €[1, ).

ProoF. 1stCase. Supposethat ¢ € O, thatis g = (J;, f),f€ Ok. Then by

,,,,,

the functions f; : fi(A) = =%, f(Aak) converge (in Ok) to f (A) =a’A?. Then

Nk
o = (0o, i) = * azk-a
i=1

i
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belongs to K, (o) and converges to g,, = (J,, f,,) which is a p-stable element
of S,.

2nd Case. Suppose K, (o) N O # (0}. Then if t €K, (o) N Ok, K,(7) con-
tains a p-stable element and is contained in K, (o).

3rd Case. Suppose K,(g) N Ox=(0}. If o =(u,f), then (by Aldous

.....

Nk
. * W.IIt.
o= St U= > Heo

a random p-stable probability measure (note that

| :=Efltld,uw(t)§1+Ef,21 1o (2)

<1 +Ef W, )duo(0)
t=t

=1+ <o,
as we suppose ¥(w, 1) = 1) and moreover such that

I#klm 1.

Then |u, | =1 but it is a priori not clear that 4, EN,,.
Let || w ||, be the real such that W(sy;,, -#) =1 and o} = e/ || i || ,

Then W(u;) = 1.
We claim that sup, va 5, fla®¥) < co. If not, there would exist reals y, with

N, o
}’kT_::OC and Zf<;7_'—;1
i=1 Yk
Set:
s Ni

N,

o k

wk _ } " o— - ’. - s ” — i ”

oy = ) s Wr= ¥ Sl =Sy, UL k= 2 Sa,-”"f, %= W% /%)
% i=1 i=1

Then W(u %) —— 0and ( /%) is relatively compact in 0. Thus we would have
k—+x

K,(0) N O # {0} (containing any limit point of (¢%)).
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We claim now that Sup; || s ||, <. If not, then | il 7= 0, and thus
up—=> 0. Up to extraction, we could suppose:

Nk
Wuimgoo; fi=2 Saf“f?_:;f;oeml()

i=1
thus o7 (us, f2)— (0, 12, + 8.) € Ok, and again K, (5) N Ok # {0}.

Now, by local compactness of S,, the sequence o, = (1, f;) is relatively
compact in S, ; clearly any of its limit points is of the form (x,, 4,,), for some
h,E 0y (1, being the preceding p-stable random probability). Note that
e F p.

By the 1st step, K,(0, k) contains a g-stable element (0, k). Suppose
k=lim,_, =% sph,. If b =3 | [P~ o, then

M, k
* ’bio — (4, 0)

i=] k

which is a non-trivial p-stable element in K,(g). If not, suppose

M, I/p
(£ er)" = b
i=1
then:
* ﬁikaoo m (Sbwtuaw k) = 600

By considering (1/n'?) *"_, 6,,, we see that K, () N Ok # {0} implies p = g; if
p > q then, again, K, () contains (,, 0); if p = g it contains (s,_u, k) which
is a p-stable element. |

COROLLARY 2. Let (x,)7-, be a l,-sequence in the Musielak—Orlicz space
L,(Q, o,P). There exist a real a =0, and (if p =2) a random p-stable
symmetric probability distribution u = (u,),, and a sequence of normalized
disjoint blocks y, = 2%, o £x, such that:

(i) For eachx€L,,

;im YA(x +y)) = Ef v(w, Al x(w)+t|)du,(t) + a*Ai*.
(ii) u is the limit conditional distribution of (x,), (in the terminology of

[BeR]).
(lll) aplp = limM_.w limk_.w lI’(j. 'yk . ll}’k| >M)'
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The second condition is equivalent to;

VIER,  explit x,(.)) — = fi 1)

Proor. We apply Proposition 1 to any limit point of (i(x,)), in S,. We
obtain disjoint blocks (), with i(yx) =2 0, a g-stable element of S,. But
then as in the L, case ([A)), the subspace span( y; ), contains /,, thus ¢ = p. The
points (i) to (iii) follow then immediately from [Ga]. |

II. The main result

We state now our main result:

THEOREM 3. Letl = p <o, p # 2, and X be a Banach space; L, an Orlicz
space which does not contain ¢,.

If 1(X) is C-finitely representable in L, then X is K.C-isomorphically
embeddable in L, (where K = K(p)).

In proving this theorem, we can suppose that ¢ is moderate on R, and that
X 1s separable. In fact we may suppose that /,(X) C-embeds in a Musielak—
Orlicz space L,(£2, o/, P).

1. Representation of X in S,
IfeE€S,, 0 =(u, f) letusdenote || o the real such that

e[ vfo ﬁ>d 0+ (55)-

Note that if (x,), C L,, l(x,,) —_ athen lx. l—1lal.

n—+awxc

The idea of the following key lemma is essentially Maurey’s one ([M]).

LEMMA 4. Let T be an embedding of I,(X) in L,.

There is a map: X — S, x = 1(x) such that:

(1) for all x€ X, 1(x) is a p-stable element of S,,;

(i1) 7(x)=lim,_  T(b, @ x), where (b,)E_, is a sequence of disjoint norma-
lized blocks on the I, basis ( fixed independently of x);

() Vx,...,x,€X:

I (S )= | e

=T (sisr)”
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ProoF. Denote by (e,), the natural /, basis. Then for each x €X, the
sequence (T(e, ®x)) ., in L, is equivalent to the /, basis. Up to extraction we
can suppose that

VxEX, i(T(e,,®x)):o> o(x)ES,

(use separability of X and a diagonal argument to obtain this convergence for
the same subsequence of the /,-basis).
Fix x,€ X. By Proposition 1, a suitable sequence of combinations

Nk

o = * afo(x),  where ¥ |af|P =1,

i=1 i

converges to a p-stable 74(x,) €S, . Again, by extracting and using a diagonal
argument, we can suppose that *I-N;l afo(x) converges (for each xEX) to a
T(x)ES,, which is however a priori not p-stable for x # x,. Note that:

Nk
To(x)=]}im lim --. lim § < > a,v"T(e,,l®x0)>,

—ot M AN =1

i.e. 7o(x) is a limit of a countable family i(7T(b°® x)), where the b? are
normalized blocks on the /, basis, which may easily be taken disjoint.

Nk
VXxEX, *  offry(x)—>1(x)ES,,

i=1

and that 7,(x,) is a p-stable element. Note that 7,(x;) = t4(xg).

Iterating this procedure for a dense sequence (x;)>; in X, and using again a
diagonal argument we obtain (1) and (ii) of Lemma 4; (iii) is an easy con-
sequence of (i) and (i1). [ ]

2. The casep>2
In this case Lemma 4 provides a map X —R_, x —a(x) such that:
(1) 170 x| Sa) S [T x| (VxEX)
and a sequence (b, ), of normalized disjoint blocks on the /, basis such that:

VAi>0, VXEX:  lim YAT(5®x)=a(x)"’.
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This formula can be interpreted in any ultrapower L, = L)/% by:
(2) P(Av(x)) = a(x)?A?

where ¥ is the modular on the Musielak-Orlicz space L, = L,and v: X~ L;
is the linear operator such that, for each x €X, v(x) is represented by
(T(b @ X))

We use then the following:

LEMMA 5. Let L, be a Musielak-Orlicz space with modular Y.
Let 4 be the order ideal in L, formed by those elements g for which

1
sup — Y(fg) < ow;
p>0 P

Let 4. be the subset of 4 jormed by the elements g having constant ratio
(1B Y(Bg).

There exists a lattice homomorphism h from % into a L,-space such that for
any g€%,, and > 0:

1
I 2l Z, ~ ¥(Bg).

PROOF OF LEMMA 5. For each g€ ¥, set:

1
6(g) =i f
(&) /{IB 2log A Jua *le) /“’“

where 7 is any nontrivial ultrafilter finer than the filter of neighborhoods of
+ cinR,.

0 is nondecreasing and additive on disjoint elements of %. Moreover it is
homogeneous (of degree p). For, ifp = 1:

O(pg) = lim —— f Wipg) 2
A di
—p7 lim - " W)
A 2log A Joa Arti

—p0(g) ~lim >—— f
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_ 1 pIA d
--- —lim f Y(ig) .
Ax 2log AJua APl

In this last expression, each integral is less than

log p Y(ig)
——— . sup
2log A iso A*

which converges to 0 as A — wo.
Hence the homogeneity of . Note that:

6(g) =ﬁ—:_” Y(Bg) foreachg€¥%, and f>0.
It is now a standard exercise to show that g — #(g)"? is a seminorm on ¥
(see e.g. [K], Proof of lemma 2.1).
Let 4" ={gE€E¥%:0(g)=0} and E = %/.4": this is a normed vector lattice;
itsnormisa L, norm(i.e. [e| A | fI =0= |le+ f||” = e ||?, Ve,fEE);its
bidual E** is therefore an L, space ([LT2], th. 1.b.2). |

Coming back to the relation (2) we see that there exists 4 : v(X)— L,(v)
such that:
VXEX  a(x)= || hv(x) |1z -

By (1), wisa || T| (| T~"| -embedding of X in L,(v), which proves the
conclusion of Theorem 3 in this case.

3. Thecase 1 = p <2
Consider now a new Musielak—Orlicz function on Q, defined by:
Y(w,4)=E, y(w, 1| Y(w)])

where Y is a p-stable symmetric random variable (of Fourier transform
EeitY — €—|t|P)‘

Extend ¥ to the space Q =Q U {®} by setting ¥(@, )= |t|’, and P to a
measure on Q by giving the weight 1 to the point @.

Recall that an application f: X — L, where L is a vector lattice, is said to be
of negative type iff:

Vn, V(-xi)i=l,...,n CX, V(Ci)i=l,..4,n CR",
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Y ¢=0= i i flx —x)=<0.
i=1 ij=1
LEMMA 6. If[,(X) embeds in L,, then there exists an application A : X —
L} (Q) such that:
(1) 4 is homogeneous of degree 1,
(i1) A7 : X — Ly is of negative type,
(ii) forall x,,...,x,in X:

n i/p
1 (S se) s

(300"

ProoOF. Lemma 4 provides now two maps:

n I/p
=Ty ( S 1x ||") -
14 i=1

a:X—R,, A: X—L,

such that, u* being the random probability distribution of Fourier transform
i
5(1) = e A= 1P we have:

vi>0, lim ‘I’(lT(bk®x))=way/(w,|t|)du§,(t)+a(x)"l”.

Let A(x, w) = A(x, ®) and A(x, @) = a(x). We have clearly:

Vi>0, VxEX: 21111 Y(AT (b, ® x)) = V(1A (x)).

As t(x)=(u", a(x)A?) we have *,t(x;)=(*pu", (2, a(x;)).A?). Noticing
that *,u* has Fourier transform exp(—(Z;A(x;)?)|t|’) we obtain more
generally, for all x;, ..., x, €EX:

n _ n _ l/p
Vi>0, klim .- .klim ¥ <A > T(bk,.®x,)> = ‘I’(( > A(x,)”) )
1 " 0 i=t j=1

which implies in particular the assertion (iii) of Lemma 6.
Assertion (i) is a consequence of the fact that 7(a. x) =« . 7(x). To check
assertion (ii) we note that (see (i1) of Corollary 2):

o(L L)
—_—

v t, eiT(bk®x)t eAA(x)ﬂtl’

k=

thus the map x — e ~4® X — L is positive definite (as the w*limit of positive
definite functions); i.e. the map x — A(x)? is of negative type. On the other
hand (see (iii) of Corollary 2) we have:
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lim iim AT (b @ X)) 1 100 > = A(X)PA2.

M—-x

As in subsection 2, let us introduce an ultrapower L, =LJ/% = L, and
the linear operator v: X —L,, x = (T(b, ®x)),. Consider in L, the band
defined by sequences (f;), of functions in L, whose support tends to 0
measure. Let P be the associated band projection. Then the preceding relation
is interpreted as:

W(Pv(x)) = a(x)?2? (VxEX, YVAER,).

Now the same proof as in subsection 2 provides an operator / : Pv(X)— L,(v)
such that a(x)= || A Pv(x) ||, (VX EX); thus x —a(x)” is a function of
negative type (see [BDCK]). m

Note that in the preceding we could obtain a very degenerate Orlicz function
W, 1.6, W(w, )=+ oo (V> 0). However it does not happen for w in the
essential union S of the supports of A(x), x €X. On S the Musielak-Orlicz
function ¥ is, up to equivalence, p-concave. For we have the following:

LEMMA 7. Let1 = p <2 andY be a p-stable random variable normalized
in L, .. If w is a moderate Orlicz function then:

(1) = Ey(AY) ~ 47 L "y %

(with absolute equivalence constants).

PrROOF OF LEMMA 7. We split:
(3) Ey(AY)=Ey(AY 1y <) + Ey(AY 1,42
The first term is smaller than (1). For the second we have:

Ey(AY 1,y 5) =y(AP(| Y| > 1)+ {(4)
with

() = fw) Ply(LY) = u]du = fw) PILY =y (u))du
=pr[zygz]w'(z)dz~f°° g
A P 24

the last equivalence resulting from standard asymptotical estimation of p-
stable distribution.
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On the other hand, as fy’(t) = w(¢) we have:

l”fjt//’(t) gzi"fj w(t) d ~f}mu/(/IS)

{p-i-l—

ds © s
Szv) [

5 sP! :

Thus {(A) = w(4) (up to a constant factor). |

Soif (A1) < o then #(A)/2 7 is equivalent to a decreasing function; it is then
well known that § is equivalent to a (not necessarily normalized) p-concave
Orlicz function, with absolute equivalence constants (see [BDC]). So our
preceding Musielak-Orlicz space L, is in fact p-concave.

END oF THE PrROOF OF THEOREM 3. We apply to the (nonlinear, but
homogeneous) operator A: X — L,(€) the same argument as in the proof
of Krivine’s factorization theorem ([LT 2], th. 1.d.11 or {Kr]) to obtain
an L, norm on the lattice J generated by the elements A(x)?, xEX in
L,, such that:

VXEX AP L= 1T x|”,

1

veer ez

F1erve s

where ¢,(¥) is the p-concavity constant of the lattice L,,. Thus

; I
p > — p
I AC)? s 2T fx)? (Vx€X).

As the map x — A(x)? is of negative type (X — L, ), the same is true for the
map x — || A(x)? ||;. Thus x — || x ||? is C{ equivalent to a negative type
function (C,= C.c,()). By the isomorphic version of a theorem of
Bretagnolle, Dacunha-Castelle and Krivine (Lemma 8 below) X is C,-isomor-
phic to a subspace of L,. [ |

For the sake of completeness, we state the following lemma, which is a slight
modification of th. 6.1 of [AMM].

LEMMA 8. Let X be a normed space; suppose that the map x — || x ||?is C?
equivalent to a negative type function x — f(x). Then X C-embeds in L,.

PrOOF. Note that x — ¢~/ is positive definite and that, for all ¢ < p:
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dt

[q+1 .

llx ”q ,E; qu (1 _— e*f(tx))
0

By [AMM], lemma 4.2, there is a continuous linear operator U:
X — Ly, &', P) such that:

o) f exp(itUx())dP/(w")
o
and we obtain:

fx(l P L f | Ux (@) ["dP" (")
0 Q

tq+1
Thus X is C?? embeddable in L, for each ¢ < p. [ ]

III. The case p =2

In this case the preceding Musielak-Orlicz functions y and  are equivalent.
For we can suppose w/(¢)/t? decreasing (for a ¢ < o) and thus (G being a
L,-normalized gaussian random variable)

Civ(A) =9(A) =E, py(AG(w) = Gy (1)

with C, =E(|G| v |G|?) and C, =E(|G| A |G |%).

The proof of §II, subsection 3 works if  is 2-concave; then L, is a subspace
of L, (by {BDC]) and this case was already known ([M]). It works as well if i is
2-convex. We obtain therefore:

ProrosITION 9. If L(X) is C-finitely representable into a 2-convex Orlicz
space L,, then X is K . C(¢) . C isomorphic to an Hilbert space (Cy(p) being the
2-convexity constant of L,).

We leave as open the question if this result can be extended to general Orlicz
spaces. We will only show that X is necessarily of type 2~ and cotype 2* (as a
consequence of Corollary 12 below).

However we can settle the problem when X is supposed to have 1.u.st (in the
sense of [DPRY]).

THEOREM 10. If X is a Banach space with local unconditional structure
such that 1(X) is C-finitely representable into an Orlicz space L, (not containing
¢,) then X is (isomorphic to) an Hilbert space.
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ProoF. We will only sketch the proof, which is very similar to that of
Theorem 3.

As in [K] we may suppose w.l.0.g. that X has an unconditional basis ( f; )" ;.
If /,(X) embeds in L, then (as a consequence of Maurey-Khintchine inequali-
ties, see [LT2], th. 1.d.6) it embeds as a sublattice in L,(/,). Let Y = X, be the
(a priori quasi-normed) lattice defined by:

| Za. fi iy = I Zla, 12 &

Let Y, be the positive cone of Y (with respect to ( f,)>. ) and { = y,,, the
Musielak-Orlicz function defined by:

() = w(J/1).

We have then clearly an embedding S: /;*(Y,) <— L; which is positively
linear (i.e. S(au + fv) = aS(u) + BS(v) for all positive reals «, § and elements
u, vof [/ (Y.)) and verifies:

ANT T ull = WSull =BT fful

(T being the given embedding of /,(X) in L, and constants 4, B depending only
on the g-concavity of L,, for some g < o).

To { we associate the space S;* of the pairs (u, f), where y is a positive
random probability distribution verifying Z(u) :=E | {(|¢])du,(t) < oo, and
f a generalized }-convex Orlicz function satisfying A, conditions with fixed
constant K.

Using an adapted version of Aldous theorem (Proposition 11 below) and
proceeding as in §II, subsection 1, we see that S induces an application
Y, —S; which satisfies:

(i) forally€Y,, o(y)is a 1-stable element of S;* (i.e. of the form (d,, al)),

(i) o(y)=lim,._ S(b, ®y) where (b;), is a normalized sequence of dis-

joint blocks in 7/},
@iii) forall y,,...,y, €Y,

AT ;l Iyl =

* a(y,)“<BnTu S Inl.

So we obtain applications A: ¥ —L; and a: Y — R, such that:

Iy~ eIl ~ F4) e +aly).

Asin 8§11, subsection 2 we have a(y) = || u(y) ||, for a certain positively linear
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operator u: Y, —L*(v). Thus a: Y, — R, is a positively linear map. On the
other hand we have:

Vyey, ‘ﬂm®y%£§AU&

This is a consequence of the coincidence of the w.m. and s.m. topologies at
degenerate random measures (see [A], lemma 2.14). Thus the map y — A(y) is
positively linear.

Finally the point (iii) before can be reformulated as:

Vy,...,y,€Y7,

ANT S Il = | 2 Ao

A Za) =BT Z Iy
S i

where the central term can be written as:

A(22)), +afzn)

Now if y =Z,a, /€Y, setting y, = «, f; we obtain:

Iy v, ~ 1A e +a(y) ~Zle].
Thus Y, ~/;* and therefore X ~ /,. |

In the preceding proof we made use of the following proposition. By positive
probability distribution we mean a probability on R... We note

ium=ﬁ‘m“ﬂm.

ProrosITION 11. Let € be a class of random positive probability distribu-
tions such that:

(1) VUES, E |l <o,

(i1) € is closed under operations of scaling and convolution,

(ili) € is w.m. closed,

(i¥) if ()s S € and p,~= p then Bty vy =2 Elit i
Then € contains a p-stable positive random probability distribution for some
1

Proor. To each probability u on R, we associate the probability ji on R,
whose Fourier transform is:
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(4) i(t) = Lu?

where 2y is the Laplace transform of u.
Recall that if u is the probability distribution of a random variable X, then

is the probability distribution of /2. X"2® G, G being a standard gaussian
variable.

To % is associated a class € of random measures on R, which is easily seen
to be a (-class in Aldous’ terminology.

Thus € contains a g-stable random measure A = ji,; using (4) it is clear that
lio 18 @ ¢/2-stable positive random probability distribution, belonging to €.l

CoroLLARY 12. If [(l,) is finitely (crudely) representable in an Orlicz
space (not containing c,) thenp =q =2 or (if p>2)g€(2, p}.

We will now make use of the following fact, due to J. L. Krivine and
B. Maurey (see [R] for a proof).

Fact. IfE is a stable infinite dimensional Banach space which contains [}
uniformly, then ( D a1 17, embeds in E ( for some 1 = p < o).

We refer to [KM] for the definition of stable Banach spaces and recall that
Orlicz spaces not containing ¢, are stable ([Ga]).

COROLLARY 13. Let g > 2. If asubspace E of an Orlicz space (not contain-
ing co) contains I} uniformly, then E contains .

For by Corollary 12, if [,(/,), g > 2 is finitely representable in an Orlicz
space, then p = q. [ |

CoroLLARY 14. Let E be an infinite dimensional subspace of an Orlicz
space (not containing c,); set:

p(EYy=sup{p:Eisoftypep} and q(E)=inf{q:E is of cotype q}.

Then E contains almost isometrically I, for pE{ p(E), ¢(E)}\{2} (and I, if
P(E)=q(E)=2).

PrOOF. By Krivine-Maurey-Pisier’s theorem ([MS], th. 13.2) E contains
I and [z uniformly. Thus E contains (D=, &), and (D, Loy,
and by Corollary 12 we have p = p(E)if p(E)<2,and g = q(E)ifq(E)> 2.1
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